Novel Highly Productive Production System for Biotherapeutics: Filamentous Fungus *Myceliophthora thermophila* C1

Markku Saloheimo

VTT Technical Research Centre of Finland Ltd

PEGS Lisbon Conference, November 21, 2019
VTT Cell Factories for Recombinant Protein Production

Host systems

- Prokaryotic
  - *Escherichia coli*

- Yeasts
  - *Saccharomyces cerevisiae*
  - *Pichia pastoris*

- Filamentous fungus
  - *Trichoderma reesei*
  - *Myceliophthora thermophila*

- Higher eukaryotes
  - Plants and plant cell cultures

From gene to protein

We can provide the customer with complete tailor-made service for producing a protein of interest.
**Myceliophthora thermophila** *(Thermotelomyces heterothallica)*

- Thermophilic fungus originally isolated from alkaline soil in Russia
- Designated earlier as *Chrysosporium lucknowense* and currently as *Myceliophthora thermophila*
- Isolated for its ability to produce neutral/alkaline cellulases for use in textile applications
- Dyadic Announced Successful Completion of Sequencing of C1 Fungal Genome (May/2005)

**Dyadic International Inc. has developed an industrially proven expression system based on the fungus Myceliophthora thermophila, C1 Expression System**

- Improved production strains with unique morphology
- C1 received a Generally Recognized As Safe (GRAS) designation from the FDA, with no viruses detected, no mycoplasmas, and no detectable mycotoxins (FDA, 2009)
- Highest production level of enzymes >120 g/L
- Highest production level of an individual recombinant enzyme 80 g/L
To further develop C1 into efficient gene expression system of biologic vaccines and drugs, to help speed up the development, lower production costs and improve the performance at flexible commercial scales.

**Efficient Expression**
- Library of promoters, carrier proteins, signal sequences and terminators
- Synthetic Expression System (SES)
- Dual vectors
- Split-marker technology
- Marker recycling
- Site-specific or random integration

**Reducing Proteolytic Activity**
- Identification of key proteases
- Deletion of protease genes
- Characterization and utilization of protease deletion strains

**Glycoengineering**
- Generation of humanized protein-glycan structures
- Engineering a G0-glycan producing C1
C1 Fermentation Technology

- Easily available defined media components – glucose, salts, micro and macro elements, AA and vitamins
- Fed-batch technology with glucose feeding
- Low viscosity culture due to morphology changes (propagule)

Fed-batch Process

- No need for induction
- Protein is secreted to the media
- 20-30 % biomass
- pH: 5-8, Temp: 20 - 45°C
- 1L to 500,000 L fermentation scale

Efficient Expression

From MTP to Large scale; productivity of mAbs (example)

- 24-wells MTP – 1 mg/4ml
- 1L fermentor – 1.7 g/l/d
- 30L fermentor – 2.4 g/l/d
VTT Synthetic Expression System (SES)

- Constitutive and extremely high-level expression permits use of any production conditions
- Expression level is tunable by changing the number of sTF binding sites
- Has been shown to function in multiple organisms: yeasts, filamentous fungi, plants and mammalian cells

Rantasalo A et al., A universal gene expression system for fungi. Nucleic Acids Res. 2018 Oct 12;46(18)
Different genetic modification methods can be applied:
- Single site directed integration
- 2 sites directed integration
- Random integration
- Episomal vectors – Transient expression system

Transformation procedure based on chemical (PEG) method with protoplasts or electroporation

Frequencies for 1μg DNA:
- >20 transformants for site specific integration
- Up to 100 transformants for random integration
- ~13,000 transformants for telomeric vector transformation
Isolation and identification of extracellular proteases

**Fermentation**

Culture supernatant

**Affinity Chromatography**

Analysis of fractions

**Protease activity assays**

Spiking with target proteins

**Zymogram gels with target protein**

**LC-ESI MS/MS**

Fractions with proteolytic activity

Protease A
Protease B
Protease C
Protease D
Protease E

Reducing Proteolytic Activity
C1 Protease library in *Pichia pastoris*

- More than 50 proteases were expressed individually in *Pichia pastoris*
- Culture supernatants of each strain expressing a C1 protease were tested in spiking experiments

Identification of critical proteases which are problematic for many sensitive target proteins

**Vaccine Antigen (3h incubation)**

<table>
<thead>
<tr>
<th>Strain ctrl</th>
<th>Buffer ctrl</th>
<th>Antigen std</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pichia supernatants expr. 14 individual C1 proteases</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

**Fc-fusion protein (1h incubation)**

<table>
<thead>
<tr>
<th>Strain ctrl</th>
<th>Fc-fusion std</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pichia supernatants expr. 15 individual C1 proteases</td>
<td>*</td>
</tr>
</tbody>
</table>
Reducing Proteolytic Activity

C1 Lineage of protease deficient strains

Systematic deletion of protease genes based on:
- Isolation and identification of extracellular proteases
- C1 protease library in *Pichia pastoris*
- Effect of different protease inhibitors on protease activity
- mRNA sequencing data
- Protease gene annotation

![Diagram of protease deficiency lineage]

- DNL104 4xΔ
- DNL110 5xΔ
- DNL115 6xΔ
- DNL120 7xΔ
- DNL121 7xΔ
- DNL125 8xΔ
- DNL135 10xΔ
- DNL140 11xΔ
- DNL145 12xΔ
- DNL131 9xΔ
Total extracellular protease activity is greatly reduced in C1 protease deficient strains

- Direct fluorescence-based assay with casein substrate
- The activity in the 8xΔ strain is reduced over 50-fold compared to the 1xΔ strain (fermentation cultures)
- The activity in the 10xΔ strain is reduced 10-fold compared to the 4xΔ strain (24-well plate cultures)
Protease Deletions are Improving Stability and Production of a Fc-fusion protein

Target protein was spiked into the culture supernatant of the different protease deletion strains.
Reducing Proteolytic Activity

Protease deletion strains are improving stability of target proteins - Difficult-to-express protein

Target protein spiked into the culture supernatant of the protease deletion strains
Advantage of C1 over Yeast and CHO

- C1 glycan structure is more mammalian like than typically in yeasts
  - The native C1 glycans are mostly high mannose type (Man3-Man9) including some hybrid glycans
  - Less engineering steps needed for C1
  - Stable genome - defined glycan structure is stable from culture to culture and batch to batch

- We aim at defined mammalian glycan forms G0, G0F, G2 and G2F in our glycoengineering efforts
Two main approaches to gain high Man3

- Man3 is the important precursor of G0 glycans
- Two approaches for high Man3:
  1. Deletion of alg3 and over-expression of Mannosidase I
  2. Deletion of alg3 and alg11

Adapted from Stanley et al., 2008, N-glycans. In: Essentials in Glycobiology. Varki et al, eds.)

- Flippase is the membrane protein enabling turning of the lipid-linked oligosaccharide to ER lumen side

Asn
Man3

G0
Alternative approach for G0: classical animal pathway

The animal glycan modification pathway could be built into C1

- Requires expression of Mannosidase I, GNT I, Mannosidase II and GNT II to gain G0 glycans
- Is more complicated than \textit{alg3} or \textit{alg3/alg11} approaches
- Not pursued in C1 presently

The **alg3** gene was deleted by replacing it with a marker gene. Glycans on native proteins were analyzed.

- The glycan pattern became much more simple
  - All higher MW glycans and hybrid glycans were omitted
  - Substantial amounts of Hex6, Man5 and Man4 glycans remained – further engineering along this strategy is in progress
Applying *alg3-alg11* deletion strategy to produce G0 glycans

- The *alg11* gene was deleted from an *alg3* deletion strain. Simultaneously heterologous GNT1 and GNT2 were expressed from the *alg11* locus. Glycans on native proteins are shown.
- G0 glycan levels of up to 95% have been reached with this strategy. In addition to G0, only Man3 and GlcNAcMan3 remain in the glycan pattern.
- Different Golgi localization signals for GNT1 were tested.

<table>
<thead>
<tr>
<th>RT</th>
<th>Glycoform</th>
<th>Area (Abundance)</th>
<th>Relative Abun (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,48</td>
<td>M3</td>
<td>30,93</td>
<td>1,63</td>
</tr>
<tr>
<td>12,46</td>
<td>M3GlcNac</td>
<td>85,79</td>
<td>4,52</td>
</tr>
<tr>
<td>14,21</td>
<td>G0</td>
<td>1781,79</td>
<td>93,85</td>
</tr>
<tr>
<td></td>
<td>sum</td>
<td>1898,51</td>
<td>100,00</td>
</tr>
</tbody>
</table>
The effect of flippase expression

- Strains were made where two different flippase variants were expressed in addition to GNT1 and GNT2 in \textit{alg3-\textit{alg11}} deletion background.
- The total glycosylation level (sum of peaks) increased \textasciitilde4x (flippase 1) or \textasciitilde9x (flippase 2).
- The glycan pattern remained good with 93-95\% G0 glycans.
- Glycoengineering in C1 continues to e.g. galactosylation and fucosylation on target proteins like Mabs.

<table>
<thead>
<tr>
<th>RT</th>
<th>Glycoform</th>
<th>Area (Abundance)</th>
<th>Relative Abun (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,48</td>
<td>M3</td>
<td>69,34</td>
<td>7,05</td>
</tr>
<tr>
<td>14,21</td>
<td>G0</td>
<td>914,85</td>
<td>92,95</td>
</tr>
<tr>
<td>Sum</td>
<td>984,19</td>
<td></td>
<td>100,00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RT</th>
<th>Glycoform</th>
<th>Area (Abundance)</th>
<th>Relative Abun (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,48</td>
<td>M3</td>
<td>116,77</td>
<td>2,84</td>
</tr>
<tr>
<td>12,46</td>
<td>M3GlcNac</td>
<td>95,17</td>
<td>2,32</td>
</tr>
<tr>
<td>14,20</td>
<td>G0</td>
<td>3894,9</td>
<td>94,84</td>
</tr>
<tr>
<td>Sum</td>
<td>4106,84</td>
<td></td>
<td>100,00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RT</th>
<th>Glycoform</th>
<th>Area (Abundance)</th>
<th>Relative Abun (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,48</td>
<td>M3</td>
<td>259,86</td>
<td>3,00</td>
</tr>
<tr>
<td>12,46</td>
<td>M3GlcNac</td>
<td>248,09</td>
<td>2,86</td>
</tr>
<tr>
<td>14,20</td>
<td>G0</td>
<td>8162,84</td>
<td>94,14</td>
</tr>
<tr>
<td>Sum</td>
<td>8670,79</td>
<td></td>
<td>100,00</td>
</tr>
</tbody>
</table>
Production of Biologics in C1
Fermentations for mAbY production

- SDS gel analysis of the mAbY antibody purified from the fermentations by protein A affinity chromatography
- ‘start’ depicts the sample loaded to the protein A column, fr4-fr6 are the elution fractions obtained from the chromatography
- Sample of CHO-produced mAbY is shown as control
- Mass spectrometry analysis showed that both chains were intact

<table>
<thead>
<tr>
<th>Fermentation #</th>
<th>Vessel volume (l)</th>
<th>Initial (final) culture volume (l)</th>
<th>Antibody titre (g/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>10</td>
<td>8.0 (10.5)</td>
<td>8.0</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0.8 (1.1)</td>
<td>6.3</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0.8 (1.1)</td>
<td>6.5</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0.8 (1.1)</td>
<td>7.9</td>
</tr>
</tbody>
</table>
mAbY Binding assay by Biacore T200

Studying the interaction of mAbs in real time

- The binding properties of C1 produced mAbY were compared to the CHO produced mAbY in a Biacore T200 assay
- The C1-produced mAbY and CHO-produced mAbY showed virtually indistinguishable binding kinetics
- Similar results were obtained with other mAbs

CHO-produced

C1-produced

\[\begin{align*}
\text{CHO-produced} & : \begin{array}{c}
\text{ka (1/M/s): } 1.033E+5 \pm 80 \\
\text{kd (1/s): } 3.538E+4 \pm 6.2E-7 \\
\text{KD (M): } 3.424E-9
\end{array} \\
\text{C1-produced} & : \begin{array}{c}
\text{ka (1/M/s): } 1.056E+5 \pm 63 \\
\text{kd (1/s): } 4.821E-4 \pm 7.3E-7 \\
\text{KD (M): } 4.565E-9
\end{array}
\end{align*}\]
Success in Bispecific mAb expression

- Production level 1 g/L in a 6-day fermentation process
- Difficult to express in several hosts
- The function of C1-produced mAb was compared to the CHO-produced control in a bioassay
  - C1-produced purified using only single chromatography step
  - CHO-produced fully purified
- Potency of C1-produced mAb in the bioassay is comparable to the CHO-produced control
Success in expressing high level of ZAPI antigen

- Schmallenberg virus antigen coupled with Spytag - difficult-to-express protein in animal cells and microbial systems
- First strain had a native C1 promoter in 6xΔ protease strain
- Using synthetic promoter (SES) for expression, higher copy number and 8x protease deletion strain increased production six-fold
- Development of the protease deficient strain and process conditions increased the titer even further
- The produced protein formed nanoparticles with Spycatcher efficiently and showed good immunogenicity in cattle

- The new strain using SES promoter system in improved protease deletion background significantly increased the production and stability of the target antigen
- Up to 1.8 g/L was purified by affinity chromatography
Production of an Fc-fusion protein in C1

- The Fc-fusion protein was expressed with three synthetic promoters with different strengths
- The strains were grown in fermentors at 1 litre scale
  - Growth and total protein production was similar between the strains
  - The Fc fusion protein was purified with protein A affinity chromatography
  - Best production level of 12.2 g/l on day 7 was obtained from promoter 2
  - Expression with an optimized synthetic promoter resulted in 13.2 g/l production level

<table>
<thead>
<tr>
<th>Strain</th>
<th>Time point</th>
<th>Fc-fusion protein concentration (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prom. 1</td>
<td>Day 7</td>
<td>9.0</td>
</tr>
<tr>
<td>Prom. 2</td>
<td>Day 7</td>
<td>12.2</td>
</tr>
<tr>
<td>Prom. 3</td>
<td>Day 7</td>
<td>7.2</td>
</tr>
<tr>
<td>Optimized Prom. 2</td>
<td>Day 7</td>
<td>13.2</td>
</tr>
</tbody>
</table>
Myceliophthora thermophila C1 is an industrialized protein production host that is now developed for therapeutic protein manufacture - with several large biopharma companies entering into collaborations.

We have identified critical proteases to deal with for therapeutic protein production enhancement and enabled a very significant reduction of the protease load in the production strains.

Our glycoengineering program aims at high proportions of human glycoforms G0, G2, FG0 and FG2. Excellent G0 levels have been reached through alg3-alg11 deletion strategy.

Monoclonal antibodies have been produced in C1 with levels reaching 22 g/l and rates up to 3.1 g/l/day. The binding characteristics of the C1-produced antibodies were very similar to CHO-produced controls. Fab fragments have been expressed at levels up to 14.5 g/l and Fc-fusion proteins up to 13.2 g/l in a 7-day process.

Difficult to express proteins have been produced in C1 at superior levels as compared with other production systems.

<table>
<thead>
<tr>
<th>Product</th>
<th>Production level g/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mabs</td>
<td>22</td>
</tr>
<tr>
<td>Fabs</td>
<td>14.5</td>
</tr>
<tr>
<td>Fc-fusion proteins</td>
<td>13.2</td>
</tr>
<tr>
<td>Difficult-to-express</td>
<td></td>
</tr>
<tr>
<td>Bispecific antibodies</td>
<td>1.0</td>
</tr>
<tr>
<td>Viral antigens</td>
<td>1.8</td>
</tr>
<tr>
<td>VLPs (extracellular prod.)</td>
<td>0.3</td>
</tr>
<tr>
<td>Bacterial vaccine protein</td>
<td>6.0</td>
</tr>
</tbody>
</table>
Acknowledgements

VTT Protein Production
Anne Huuskonen
Marika Vitikainen
Marilyn Wiebe
Georg Schmidt
Veera Korja
Anssi Rantasalo
Kari Koivuranta
Outi Koivistoinen
Hanna Kuusinen
Kaisa Roine
Karita Viita-aho
Merja Aarnio
Sirpa Holm
Christopher Landowski

Dyadic International Inc.
Ronen Tchelet
Gabor Keresztes
Mark A. Emalfarb

VTT Analytics
Heli Nygren
Natalia Maiorova

VTT Biosensors
Kristina Iljin

LC ESI MS/MS
Turku Proteomics Facility,
University of Turku and Åbo Akademi University

Contact Dyadic – rtchelet@dyadic.com
THANK YOU

rtchelet@dyadic.com
markku.saloheimo@vtt.fi